HCl Prod Furnaces, PCDD/PCDF, June 28, 2002

Cond ID	Facility	Location	Cond Date APCS		Condition	PCDD/PCDF Stack Gas (ng TEQ/dscm)				
					Description	Cond Avg	Run 1	Run 2	Run 3	
2017C3	Dow Chemical Company	Freeport, TX	2/1/98	WHB/Q/HCIABS/VE/CLWS	Risk burn, normal operating conditions	2.088	1.923	1.973	2.368	
2018C2	Dow Chemical Company	Freeport, TX	4/1/98	WHB/VS/Q/HCLABS/VS/CLWS	Risk burn, normal operating conditions	0.531	0.575	0.564	0.455	
2020C3	Dow Chemical Company	Freeport, TX	3/1/00	WHB/VS/WS	Risk burn, normal operating cond of liq feed and comb temp	0.117	0.084	0.137	0.131	
	PPG Ind	Lake Charles, LA	5/1/01	WHB, WS (2 stage)	Trial burn, min comb temp	0.060	0.030	0.070	0.079	
2022C2	PPG Ind	Lake Charles, LA	5/1/01	WHB, WS (2 stage)	Trial burn, increased PCB feed rate	0.063	0.089	0.044	0.057	
2022C3	PPG Ind	Lake Charles, LA	5/1/01	WHB, WS (2 stage)	Normal comb temp	0.034	0.028	0.031	0.042	
2022C4	PPG Ind	Lake Charles, LA	5/1/01	WHB, WS (2 stage)	Risk burn, normal op cond, PCB containing material	0.040	0.030	0.054	0.035	
786C3	Dow Chemical Company	Freeport, TX	8/1/98	DQ/HCLABS/VS/CLWS	Risk burn; normal operating conditions	1.680	1.906	1.308	1.827	
788C3	Dow Chemical Company	Freeport, TX	11/1/97	MGCLREC/VS/SEP/DM	Risk burn, max liq waste feed rate, normal comb temp	0.020	0.023	0.020	0.018	
842C2	Dow Chemical Company	Freeport, TX	5/1/98	WHB/HCLABS/WS	Risk burn, normal operating conditions	1.684	1.456	1.797	1.798	
844C2	Dow Chemical Company	Freeport, TX	7/1/98	WHB/HCLABS/WS	Risk burn, slightly above normal liq waste feed rate, normal comb ten	1.020	1.032	1.016	1.011	
845C3	Dow Chemical Company	Freeport, TX	4/1/98	WHB/Q/HCLABS/VS/WS	Risk burn, above normal feed of liq waste, normal comb temp	0.509	0.531	0.490	0.506	
848C3	Dow Chemical Company	Freeport, TX	6/1/98	WHB/HCIABS/CWS	Risk burn, above normal liq waste feed rate, normal comb temp	6.774	8.267	6.143	5.910	
851C1	Dow Chemical Company	Pittsburg, CA	11/1/99	Q/HCIABS/WS	Trial burn, max comb chamber temp	0.064		0.071	0.056	
	Dow Chemical Company	Pittsburg, CA	10/1/99	Q/HCIABS/WS	Trial burn, min comb chamber temp	0.055	0.063	0.052		
851C3	Dow Chemical Company	Pittsburg, CA	10/1/99	Q/HCIABS/WS	Risk burn, normal operating conditions	0.050	0.037	0.055	0.060	
853C10	Dupont Dow Elastomers	LaPlace, LA	4/1/97	WQ/3STGHCIABS/S/CWS	Risk burn, normal operating cond	0.059	0.123	0.033	0.023	
854C1	Eastman Chemical Company	, Te Longview, TX	6/1/98	QT/ABS/WS	Trial burn, worst case for organics destruction	0.147	0.202	0.132	0.107	

HCI Prod Furnaces, PCDD/PCDF, June 28, 2002

Cond ID	CO	CO	HC	DF	RE	Sootblow	Sootblow	Waste	Comp Test		Worst Case			
	MHRA	RA	RA	max	min	Status	Avg	Heat	vs Normal		vs Normal			
	ppmv	ppmv	ppmv	%	%		Used	Boiler		Classification	Comments			
2017C3	1	0				No	No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
201703	'	U				INO	INO	163	IND	INA	Carriot define worst case operating conditions for wet controls			
2018C2	49	23			No		No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
2020C3	3					No	No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
2022C1	57	1				No	No	Yes	СТ	NA	Cannot define worst case operating conditions for wet controls			
2022C2	4	1				No	No	Yes	CT	NA	Cannot define worst case operating conditions for wet controls			
2022C3	4	1				No	No	Yes	N	NA	Cannot define worst case operating conditions for wet controls			
2022C4	3	1				No	No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
786C3	21	7							RB	NA	Cannot define worst case operating conditions for wet controls			
788C3	34	9							RB	NA NA	Cannot define worst case operating conditions for wet controls			
0.4000	0	0				NI-	NI-	V	DD	NIA				
842C2	3	3				No	No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
844C2	17					No	No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
845C3	9	7				No	No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
848C3	16	14				No	No	Yes	RB	NA	Cannot define worst case operating conditions for wet controls			
851C1	29		0.4	99.999	99.999				СТ	NA	Cannot define worst case operating conditions for wet controls			
851C2	9		0.1	99.999	99.999				CT	NA NA	Cannot define worst case operating conditions for wet controls			
851C3	16		0.1	22.230					RB	NA	Cannot define worst case operating conditions for wet controls			
853C10									RB	NA	Cannot define worst case operating conditions for wet controls			
854C1	13			100	99.9999				СТ	NA	Cannot define worst case operating conditions for wet controls			